Paper ID: 2410.17943
Optimizing Travel Itineraries with AI Algorithms in a Microservices Architecture: Balancing Cost, Time, Preferences, and Sustainability
Biman Barua, M. Shamim Kaiser
The objective of this research is how an implementation of AI algorithms in the microservices architecture enhances travel itineraries by cost, time, user preferences, and environmental sustainability. It uses machine learning models for both cost forecasting and personalization, genetic algorithm for optimization of the itinerary, and heuristics for sustainability checking. Primary evaluated parameters consist of latency, ability to satisfy user preferences, cost and environmental concern. The experimental results demonstrate an average of 4.5 seconds of response time on 1000 concurrent users and 92% of user preferences accuracy. The cost efficiency is proved, with 95% of provided trips being within the limits of the budget declared by the user. The system also implements some measures to alleviate negative externalities related to travel and 60% of offered travel plans had green options incorporated, resulting in the average 15% lower carbon emissions than the traditional travel plans offered. The genetic algorithm with time complexity O(g.p.f) provides the optimal solution in 100 generations. Every iteration improves the quality of the solution by 5%, thus enabling its effective use in optimization problems where time is measured in seconds. Finally, the system is designed to be fault-tolerant with functional 99.9% availability which allows the provision of services even when requirements are exceeded. Travel optimization platform is turned dynamic and efficient by this microservices based architecture which provides enhanced scaling, allows asynchronous communication and real time changes. Because of the incorporation of Ai, cost control and eco-friendliness approaches, the system addresses the different user needs in the present days travel business.
Submitted: Oct 23, 2024