Paper ID: 2410.18102
Multiple Global Peaks Big Bang-Big Crunch Algorithm for Multimodal Optimization
Fabio Stroppa
The main challenge of multimodal optimization problems is identifying multiple peaks with high accuracy in multidimensional search spaces with irregular landscapes. This work proposes the Multiple Global Peaks Big Bang-Big Crunch algorithm, which addresses the challenge of multimodal optimization problems by introducing a specialized mechanism for each operator. Inspired by the evolution of the universe, Multiple Global Peaks Big Bang-Big Crunch groups the best individuals of the population into cluster-based centers of mass and then expands them with a progressively lower disturbance to guarantee convergence. During this process, it (i) applies a distance-based filtering to remove unnecessary elites such that the ones on smaller peaks are not lost, (ii) promotes isolated individuals based on their niche count after clustering, and (iii) balances exploration and exploitation during offspring generation to target specific accuracy levels. Experimental results on twenty multimodal benchmark test functions show that Multiple Gloal Peaks Big Bang-Big Crunch generally performs better or competitively with respect to other state-of-the-art multimodal optimization algorithms.
Submitted: Oct 8, 2024