Paper ID: 2410.18539
Interpretable Representation Learning from Videos using Nonlinear Priors
Marian Longa, João F. Henriques
Learning interpretable representations of visual data is an important challenge, to make machines' decisions understandable to humans and to improve generalisation outside of the training distribution. To this end, we propose a deep learning framework where one can specify nonlinear priors for videos (e.g. of Newtonian physics) that allow the model to learn interpretable latent variables and use these to generate videos of hypothetical scenarios not observed at training time. We do this by extending the Variational Auto-Encoder (VAE) prior from a simple isotropic Gaussian to an arbitrary nonlinear temporal Additive Noise Model (ANM), which can describe a large number of processes (e.g. Newtonian physics). We propose a novel linearization method that constructs a Gaussian Mixture Model (GMM) approximating the prior, and derive a numerically stable Monte Carlo estimate of the KL divergence between the posterior and prior GMMs. We validate the method on different real-world physics videos including a pendulum, a mass on a spring, a falling object and a pulsar (rotating neutron star). We specify a physical prior for each experiment and show that the correct variables are learned. Once a model is trained, we intervene on it to change different physical variables (such as oscillation amplitude or adding air drag) to generate physically correct videos of hypothetical scenarios that were not observed previously.
Submitted: Oct 24, 2024