Paper ID: 2410.18804
Fast constrained sampling in pre-trained diffusion models
Alexandros Graikos, Nebojsa Jojic, Dimitris Samaras
Diffusion models have dominated the field of large, generative image models, with the prime examples of Stable Diffusion and DALL-E 3 being widely adopted. These models have been trained to perform text-conditioned generation on vast numbers of image-caption pairs and as a byproduct, have acquired general knowledge about natural image statistics. However, when confronted with the task of constrained sampling, e.g. generating the right half of an image conditioned on the known left half, applying these models is a delicate and slow process, with previously proposed algorithms relying on expensive iterative operations that are usually orders of magnitude slower than text-based inference. This is counter-intuitive, as image-conditioned generation should rely less on the difficult-to-learn semantic knowledge that links captions and imagery, and should instead be achievable by lower-level correlations among image pixels. In practice, inverse models are trained or tuned separately for each inverse problem, e.g. by providing parts of images during training as an additional condition, to allow their application in realistic settings. However, we argue that this is not necessary and propose an algorithm for fast-constrained sampling in large pre-trained diffusion models (Stable Diffusion) that requires no expensive backpropagation operations through the model and produces results comparable even to the state-of-the-art \emph{tuned} models. Our method is based on a novel optimization perspective to sampling under constraints and employs a numerical approximation to the expensive gradients, previously computed using backpropagation, incurring significant speed-ups.
Submitted: Oct 24, 2024