Paper ID: 2410.18832
MazeNet: An Accurate, Fast, and Scalable Deep Learning Solution for Steiner Minimum Trees
Gabriel Díaz Ramos, Toros Arikan, Richard G. Baraniuk
The Obstacle Avoiding Rectilinear Steiner Minimum Tree (OARSMT) problem, which seeks the shortest interconnection of a given number of terminals in a rectilinear plane while avoiding obstacles, is a critical task in integrated circuit design, network optimization, and robot path planning. Since OARSMT is NP-hard, exact algorithms scale poorly with the number of terminals, leading practical solvers to sacrifice accuracy for large problems. We propose MazeNet, a deep learning-based method that learns to solve the OARSMT from data. MazeNet reframes OARSMT as a maze-solving task that can be addressed with a recurrent convolutional neural network (RCNN). A key hallmark of MazeNet is its scalability: we only need to train the RCNN blocks on mazes with a small number of terminals; larger mazes can be solved by replicating the same pre-trained blocks to create a larger network. Across a wide range of experiments, MazeNet achieves perfect OARSMT-solving accuracy, significantly reduces runtime compared to classical exact algorithms, and can handle more terminals than state-of-the-art approximate algorithms.
Submitted: Oct 24, 2024