Paper ID: 2410.19105

Conditional diffusions for neural posterior estimation

Tianyu Chen, Vansh Bansal, James G. Scott

Neural posterior estimation (NPE), a simulation-based computational approach for Bayesian inference, has shown great success in situations where posteriors are intractable or likelihood functions are treated as "black boxes." Existing NPE methods typically rely on normalizing flows, which transform a base distributions into a complex posterior by composing many simple, invertible transformations. But flow-based models, while state of the art for NPE, are known to suffer from several limitations, including training instability and sharp trade-offs between representational power and computational cost. In this work, we demonstrate the effectiveness of conditional diffusions as an alternative to normalizing flows for NPE. Conditional diffusions address many of the challenges faced by flow-based methods. Our results show that, across a highly varied suite of benchmarking problems for NPE architectures, diffusions offer improved stability, superior accuracy, and faster training times, even with simpler, shallower models. These gains persist across a variety of different encoder or "summary network" architectures, as well as in situations where no summary network is required. The code will be publicly available at \url{this https URL}.

Submitted: Oct 24, 2024