Paper ID: 2410.19494
Graph Linearization Methods for Reasoning on Graphs with Large Language Models
Christos Xypolopoulos, Guokan Shang, Xiao Fei, Giannis Nikolentzos, Hadi Abdine, Iakovos Evdaimon, Michail Chatzianastasis, Giorgos Stamou, Michalis Vazirgiannis
Large language models have evolved to process multiple modalities beyond text, such as images and audio, which motivates us to explore how to effectively leverage them for graph machine learning tasks. The key question, therefore, is how to transform graphs into linear sequences of tokens, a process we term graph linearization, so that LLMs can handle graphs naturally. We consider that graphs should be linearized meaningfully to reflect certain properties of natural language text, such as local dependency and global alignment, in order to ease contemporary LLMs, trained on trillions of textual tokens, better understand graphs. To achieve this, we developed several graph linearization methods based on graph centrality, degeneracy, and node relabeling schemes. We then investigated their effect on LLM performance in graph reasoning tasks. Experimental results on synthetic graphs demonstrate the effectiveness of our methods compared to random linearization baselines. Our work introduces novel graph representations suitable for LLMs, contributing to the potential integration of graph machine learning with the trend of multi-modal processing using a unified transformer model.
Submitted: Oct 25, 2024