Paper ID: 2410.19788

Multi-modal Image and Radio Frequency Fusion for Optimizing Vehicle Positioning

Ouwen Huan, Tao Luo, Mingzhe Chen

In this paper, a multi-modal vehicle positioning framework that jointly localizes vehicles with channel state information (CSI) and images is designed. In particular, we consider an outdoor scenario where each vehicle can communicate with only one BS, and hence, it can upload its estimated CSI to only its associated BS. Each BS is equipped with a set of cameras, such that it can collect a small number of labeled CSI, a large number of unlabeled CSI, and the images taken by cameras. To exploit the unlabeled CSI data and position labels obtained from images, we design an meta-learning based hard expectation-maximization (EM) algorithm. Specifically, since we do not know the corresponding relationship between unlabeled CSI and the multiple vehicle locations in images, we formulate the calculation of the training objective as a minimum matching problem. To reduce the impact of label noises caused by incorrect matching between unlabeled CSI and vehicle locations obtained from images and achieve better convergence, we introduce a weighted loss function on the unlabeled datasets, and study the use of a meta-learning algorithm for computing the weighted loss. Subsequently, the model parameters are updated according to the weighted loss function of unlabeled CSI samples and their matched position labels obtained from images. Simulation results show that the proposed method can reduce the positioning error by up to 61% compared to a baseline that does not use images and uses only CSI fingerprint for vehicle positioning.

Submitted: Oct 15, 2024