Paper ID: 2410.19803
First-Person Fairness in Chatbots
Tyna Eloundou, Alex Beutel, David G. Robinson, Keren Gu-Lemberg, Anna-Luisa Brakman, Pamela Mishkin, Meghan Shah, Johannes Heidecke, Lilian Weng, Adam Tauman Kalai
Chatbots like ChatGPT are used for diverse purposes, ranging from resume writing to entertainment. These real-world applications are different from the institutional uses, such as resume screening or credit scoring, which have been the focus of much of AI research on fairness. Ensuring equitable treatment for all users in these first-person contexts is critical. In this work, we study "first-person fairness," which means fairness toward the chatbot user. This includes providing high-quality responses to all users regardless of their identity or background and avoiding harmful stereotypes. We propose a scalable, privacy-preserving method for evaluating one aspect of first-person fairness across a large, heterogeneous corpus of real-world chatbot interactions. Specifically, we assess potential bias linked to users' names, which can serve as proxies for demographic attributes like gender or race, in chatbot systems such as ChatGPT, which provide mechanisms for storing and using user names. Our method leverages a second language model to privately analyze name-sensitivity in the chatbot's responses. We verify the validity of these annotations through independent human evaluation. Further, we show that post-training interventions, including RL, significantly mitigate harmful stereotypes. Our approach also yields succinct descriptions of response differences across tasks. For instance, in the "writing a story" task, chatbot responses show a tendency to create protagonists whose gender matches the likely gender inferred from the user's name. Moreover, a pattern emerges where users with female-associated names receive responses with friendlier and simpler language slightly more often than users with male-associated names. Finally, we provide the system messages required for external researchers to further investigate ChatGPT's behavior with hypothetical user profiles.
Submitted: Oct 16, 2024