Paper ID: 2410.19811

ControlAgent: Automating Control System Design via Novel Integration of LLM Agents and Domain Expertise

Xingang Guo, Darioush Keivan, Usman Syed, Lianhui Qin, Huan Zhang, Geir Dullerud, Peter Seiler, Bin Hu

Control system design is a crucial aspect of modern engineering with far-reaching applications across diverse sectors including aerospace, automotive systems, power grids, and robotics. Despite advances made by Large Language Models (LLMs) in various domains, their application in control system design remains limited due to the complexity and specificity of control theory. To bridge this gap, we introduce ControlAgent, a new paradigm that automates control system design via novel integration of LLM agents and control-oriented domain expertise. ControlAgent encodes expert control knowledge and emulates human iterative design processes by gradually tuning controller parameters to meet user-specified requirements for stability, performance, and robustness. ControlAgent integrates multiple collaborative LLM agents, including a central agent responsible for task distribution and task-specific agents dedicated to detailed controller design for various types of systems and requirements. ControlAgent also employs a Python computation agent that performs complex calculations and controller evaluations based on standard design information provided by task-specified LLM agents. Combined with a history and feedback module, the task-specific LLM agents iteratively refine controller parameters based on real-time feedback from prior designs. Overall, ControlAgent mimics the design processes used by (human) practicing engineers, but removes all the human efforts and can be run in a fully automated way to give end-to-end solutions for control system design with user-specified requirements. To validate ControlAgent's effectiveness, we develop ControlEval, an evaluation dataset that comprises 500 control tasks with various specific design goals. The effectiveness of ControlAgent is demonstrated via extensive comparative evaluations between LLM-based and traditional human-involved toolbox-based baselines.

Submitted: Oct 17, 2024