Paper ID: 2410.19846

YOLO11 and Vision Transformers based 3D Pose Estimation of Immature Green Fruits in Commercial Apple Orchards for Robotic Thinning

Ranjan Sapkota, Manoj Karkee

In this study, a robust method for 3D pose estimation of immature green apples (fruitlets) in commercial orchards was developed, utilizing the YOLO11 object detection and pose estimation algorithm alongside Vision Transformers (ViT) for depth estimation (Dense Prediction Transformer (DPT) and Depth Anything V2). For object detection and pose estimation, performance comparisons of YOLO11 (YOLO11n, YOLO11s, YOLO11m, YOLO11l and YOLO11x) and YOLOv8 (YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l and YOLOv8x) were made under identical hyperparameter settings among the all configurations. It was observed that YOLO11n surpassed all configurations of YOLO11 and YOLOv8 in terms of box precision and pose precision, achieving scores of 0.91 and 0.915, respectively. Conversely, YOLOv8n exhibited the highest box and pose recall scores of 0.905 and 0.925, respectively. Regarding the mean average precision at 50\% intersection over union (mAP@50), YOLO11s led all configurations with a box mAP@50 score of 0.94, while YOLOv8n achieved the highest pose mAP@50 score of 0.96. In terms of image processing speed, YOLO11n outperformed all configurations with an impressive inference speed of 2.7 ms, significantly faster than the quickest YOLOv8 configuration, YOLOv8n, which processed images in 7.8 ms. Subsequent integration of ViTs for the green fruit's pose depth estimation revealed that Depth Anything V2 outperformed Dense Prediction Transformer in 3D pose length validation, achieving the lowest Root Mean Square Error (RMSE) of 1.52 and Mean Absolute Error (MAE) of 1.28, demonstrating exceptional precision in estimating immature green fruit lengths. Integration of YOLO11 and Depth Anything Model provides a promising solution to 3D pose estimation of immature green fruits for robotic thinning applications.

Submitted: Oct 21, 2024