Paper ID: 2410.20911

Hacking Back the AI-Hacker: Prompt Injection as a Defense Against LLM-driven Cyberattacks

Dario Pasquini, Evgenios M. Kornaropoulos, Giuseppe Ateniese

Large language models (LLMs) are increasingly being harnessed to automate cyberattacks, making sophisticated exploits more accessible and scalable. In response, we propose a new defense strategy tailored to counter LLM-driven cyberattacks. We introduce Mantis, a defensive framework that exploits LLMs' susceptibility to adversarial inputs to undermine malicious operations. Upon detecting an automated cyberattack, Mantis plants carefully crafted inputs into system responses, leading the attacker's LLM to disrupt their own operations (passive defense) or even compromise the attacker's machine (active defense). By deploying purposefully vulnerable decoy services to attract the attacker and using dynamic prompt injections for the attacker's LLM, Mantis can autonomously hack back the attacker. In our experiments, Mantis consistently achieved over 95% effectiveness against automated LLM-driven attacks. To foster further research and collaboration, Mantis is available as an open-source tool: this https URL

Submitted: Oct 28, 2024