Paper ID: 2410.21013

Frequency matters: Modeling irregular morphological patterns in Spanish with Transformers

Akhilesh Kakolu Ramarao, Kevin Tang, Dinah Baer-Henney

The present paper evaluates the learning behaviour of a transformer-based neural network with regard to an irregular inflectional paradigm. We apply the paradigm cell filling problem to irregular patterns. We approach this problem using the morphological reinflection task and model it as a character sequence-to-sequence learning problem. The test case under investigation are irregular verbs in Spanish. Besides many regular verbs in Spanish L-shaped verbs the first person singular indicative stem irregularly matches the subjunctive paradigm, while other indicative forms remain unaltered. We examine the role of frequency during learning and compare models under differing input frequency conditions. We train the model on a corpus of Spanish with a realistic distribution of regular and irregular verbs to compare it with models trained on input with augmented distributions of (ir)regular words. We explore how the neural models learn this L-shaped pattern using post-hoc analyses. Our experiments show that, across frequency conditions, the models are surprisingly capable of learning the irregular pattern. Furthermore, our post-hoc analyses reveal the possible sources of errors. All code and data are available at \url{this https URL} under MIT license.

Submitted: Oct 28, 2024