Paper ID: 2410.21151
Offline Reinforcement Learning With Combinatorial Action Spaces
Matthew Landers, Taylor W. Killian, Hugo Barnes, Thomas Hartvigsen, Afsaneh Doryab
Reinforcement learning problems often involve large action spaces arising from the simultaneous execution of multiple sub-actions, resulting in combinatorial action spaces. Learning in combinatorial action spaces is difficult due to the exponential growth in action space size with the number of sub-actions and the dependencies among these sub-actions. In offline settings, this challenge is compounded by limited and suboptimal data. Current methods for offline learning in combinatorial spaces simplify the problem by assuming sub-action independence. We propose Branch Value Estimation (BVE), which effectively captures sub-action dependencies and scales to large combinatorial spaces by learning to evaluate only a small subset of actions at each timestep. Our experiments show that BVE outperforms state-of-the-art methods across a range of action space sizes.
Submitted: Oct 28, 2024