Paper ID: 2410.21298

Explainable Artificial Intelligent (XAI) for Predicting Asphalt Concrete Stiffness and Rutting Resistance: Integrating Bailey's Aggregate Gradation Method

Warat Kongkitkul, Sompote Youwai, Siwipa Khamsoy, Manaswee Feungfung

This study employs explainable artificial intelligence (XAI) techniques to analyze the behavior of asphalt concrete with varying aggregate gradations, focusing on resilience modulus (MR) and dynamic stability (DS) as measured by wheel track tests. The research utilizes a deep learning model with a multi-layer perceptron architecture to predict MR and DS based on aggregate gradation parameters derived from Bailey's Method, including coarse aggregate ratio (CA), fine aggregate coarse ratio (FAc), and other mix design variables. The model's performance was validated using k-fold cross-validation, demonstrating superior accuracy compared to alternative machine learning approaches. SHAP (SHapley Additive exPlanations) values were applied to interpret the model's predictions, providing insights into the relative importance and impact of different gradation characteristics on asphalt concrete performance. Key findings include the identification of critical aggregate size thresholds, particularly the 0.6 mm sieve size, which significantly influences both MR and DS. The study revealed size-dependent performance of aggregates, with coarse aggregates primarily affecting rutting resistance and medium-fine aggregates influencing stiffness. The research also highlighted the importance of aggregate lithology in determining rutting resistance. To facilitate practical application, web-based interfaces were developed for predicting MR and DS, incorporating explainable features to enhance transparency and interpretation of results. This research contributes a data-driven approach to understanding the complex relationships between aggregate gradation and asphalt concrete performance, potentially informing more efficient and performance-oriented mix design processes in the future.

Submitted: Oct 16, 2024