Paper ID: 2410.21303

VEMOCLAP: A video emotion classification web application

Serkan Sulun, Paula Viana, Matthew E. P. Davies

We introduce VEMOCLAP: Video EMOtion Classifier using Pretrained features, the first readily available and open-source web application that analyzes the emotional content of any user-provided video. We improve our previous work, which exploits open-source pretrained models that work on video frames and audio, and then efficiently fuse the resulting pretrained features using multi-head cross-attention. Our approach increases the state-of-the-art classification accuracy on the Ekman-6 video emotion dataset by 4.3% and offers an online application for users to run our model on their own videos or YouTube videos. We invite the readers to try our application at serkansulun.com/app.

Submitted: Oct 22, 2024