Paper ID: 2410.21405

Bayesian Collaborative Bandits with Thompson Sampling for Improved Outreach in Maternal Health Program

Arpan Dasgupta, Gagan Jain, Arun Suggala, Karthikeyan Shanmugam, Milind Tambe, Aparna Taneja

Mobile health (mHealth) programs face a critical challenge in optimizing the timing of automated health information calls to beneficiaries. This challenge has been formulated as a collaborative multi-armed bandit problem, requiring online learning of a low-rank reward matrix. Existing solutions often rely on heuristic combinations of offline matrix completion and exploration strategies. In this work, we propose a principled Bayesian approach using Thompson Sampling for this collaborative bandit problem. Our method leverages prior information through efficient Gibbs sampling for posterior inference over the low-rank matrix factors, enabling faster convergence. We demonstrate significant improvements over state-of-the-art baselines on a real-world dataset from the world's largest maternal mHealth program. Our approach achieves a $16\%$ reduction in the number of calls compared to existing methods and a $47$\% reduction compared to the deployed random policy. This efficiency gain translates to a potential increase in program capacity by $0.5-1.4$ million beneficiaries, granting them access to vital ante-natal and post-natal care information. Furthermore, we observe a $7\%$ and $29\%$ improvement in beneficiary retention (an extremely hard metric to impact) compared to state-of-the-art and deployed baselines, respectively. Synthetic simulations further demonstrate the superiority of our approach, particularly in low-data regimes and in effectively utilizing prior information. We also provide a theoretical analysis of our algorithm in a special setting using Eluder dimension.

Submitted: Oct 28, 2024