Paper ID: 2410.21749

Reliable and Compact Graph Fine-tuning via GraphSparse Prompting

Bo Jiang, Hao Wu, Beibei Wang, Jin Tang, Bin Luo

Recently, graph prompt learning has garnered increasing attention in adapting pre-trained GNN models for downstream graph learning tasks. However, existing works generally conduct prompting over all graph elements (e.g., nodes, edges, node attributes, etc.), which is suboptimal and obviously redundant. To address this issue, we propose exploiting sparse representation theory for graph prompting and present Graph Sparse Prompting (GSP). GSP aims to adaptively and sparsely select the optimal elements (e.g., certain node attributes) to achieve compact prompting for downstream tasks. Specifically, we propose two kinds of GSP models, termed Graph Sparse Feature Prompting (GSFP) and Graph Sparse multi-Feature Prompting (GSmFP). Both GSFP and GSmFP provide a general scheme for tuning any specific pre-trained GNNs that can achieve attribute selection and compact prompt learning simultaneously. A simple yet effective algorithm has been designed for solving GSFP and GSmFP models. Experiments on 16 widely-used benchmark datasets validate the effectiveness and advantages of the proposed GSFPs.

Submitted: Oct 29, 2024