Paper ID: 2410.21803
SimSiam Naming Game: A Unified Approach for Representation Learning and Emergent Communication
Nguyen Le Hoang, Tadahiro Taniguchi, Fang Tianwei, Akira Taniguchi
Emergent communication, driven by generative models, enables agents to develop a shared language for describing their individual views of the same objects through interactions. Meanwhile, self-supervised learning (SSL), particularly SimSiam, uses discriminative representation learning to make representations of augmented views of the same data point closer in the representation space. Building on the prior work of VI-SimSiam, which incorporates a generative and Bayesian perspective into the SimSiam framework via variational inference (VI) interpretation, we propose SimSiam+VAE, a unified approach for both representation learning and emergent communication. SimSiam+VAE integrates a variational autoencoder (VAE) into the predictor of the SimSiam network to enhance representation learning and capture uncertainty. Experimental results show that SimSiam+VAE outperforms both SimSiam and VI-SimSiam. We further extend this model into a communication framework called the SimSiam Naming Game (SSNG), which applies the generative and Bayesian approach based on VI to develop internal representations and emergent language, while utilizing the discriminative process of SimSiam to facilitate mutual understanding between agents. In experiments with established models, despite the dynamic alternation of agent roles during interactions, SSNG demonstrates comparable performance to the referential game and slightly outperforms the Metropolis-Hastings naming game.
Submitted: Oct 29, 2024