Paper ID: 2410.22558
Unsupervised Multimodal Fusion of In-process Sensor Data for Advanced Manufacturing Process Monitoring
Matthew McKinney, Anthony Garland, Dale Cillessen, Jesse Adamczyk, Dan Bolintineanu, Michael Heiden, Elliott Fowler, Brad L. Boyce
Effective monitoring of manufacturing processes is crucial for maintaining product quality and operational efficiency. Modern manufacturing environments generate vast amounts of multimodal data, including visual imagery from various perspectives and resolutions, hyperspectral data, and machine health monitoring information such as actuator positions, accelerometer readings, and temperature measurements. However, interpreting this complex, high-dimensional data presents significant challenges, particularly when labeled datasets are unavailable. This paper presents a novel approach to multimodal sensor data fusion in manufacturing processes, inspired by the Contrastive Language-Image Pre-training (CLIP) model. We leverage contrastive learning techniques to correlate different data modalities without the need for labeled data, developing encoders for five distinct modalities: visual imagery, audio signals, laser position (x and y coordinates), and laser power measurements. By compressing these high-dimensional datasets into low-dimensional representational spaces, our approach facilitates downstream tasks such as process control, anomaly detection, and quality assurance. We evaluate the effectiveness of our approach through experiments, demonstrating its potential to enhance process monitoring capabilities in advanced manufacturing systems. This research contributes to smart manufacturing by providing a flexible, scalable framework for multimodal data fusion that can adapt to diverse manufacturing environments and sensor configurations.
Submitted: Oct 29, 2024