Paper ID: 2410.22622
FISC: Federated Domain Generalization via Interpolative Style Transfer and Contrastive Learning
Dung Thuy Nguyen, Taylor T. Johnson, Kevin Leach
Federated Learning (FL) shows promise in preserving privacy and enabling collaborative learning. However, most current solutions focus on private data collected from a single domain. A significant challenge arises when client data comes from diverse domains (i.e., domain shift), leading to poor performance on unseen domains. Existing Federated Domain Generalization approaches address this problem but assume each client holds data for an entire domain, limiting their practicality in real-world scenarios with domain-based heterogeneity and client sampling. To overcome this, we introduce FISC, a novel FL domain generalization paradigm that handles more complex domain distributions across clients. FISC enables learning across domains by extracting an interpolative style from local styles and employing contrastive learning. This strategy gives clients multi-domain representations and unbiased convergent targets. Empirical results on multiple datasets, including PACS, Office-Home, and IWildCam, show FISC outperforms state-of-the-art (SOTA) methods. Our method achieves accuracy improvements ranging from 3.64% to 57.22% on unseen domains. Our code is available at this https URL
Submitted: Oct 30, 2024