Paper ID: 2410.23031

Offline Reinforcement Learning and Sequence Modeling for Downlink Link Adaptation

Samuele Peri, Alessio Russo, Gabor Fodor, Pablo Soldati

Contemporary radio access networks employ link adaption (LA) algorithms to optimize the modulation and coding schemes to adapt to the prevailing propagation conditions and are near-optimal in terms of the achieved spectral efficiency. LA is a challenging task in the presence of mobility, fast fading, and imperfect channel quality information and limited knowledge of the receiver characteristics at the transmitter, which render model-based LA algorithms complex and suboptimal. Model-based LA is especially difficult as connected user equipment devices become increasingly heterogeneous in terms of receiver capabilities, antenna configurations and hardware characteristics. Recognizing these difficulties, previous works have proposed reinforcement learning (RL) for LA, which faces deployment difficulties due to their potential negative impacts on live performance. To address this challenge, this paper considers offline RL to learn LA policies from data acquired in live networks with minimal or no intrusive effects on the network operation. We propose three LA designs based on batch-constrained deep Q-learning, conservative Q-learning, and decision transformers, showing that offline RL algorithms can achieve performance of state-of-the-art online RL methods when data is collected with a proper behavioral policy.

Submitted: Oct 30, 2024