Paper ID: 2410.23079

BUZZ: Beehive-structured Sparse KV Cache with Segmented Heavy Hitters for Efficient LLM Inference

Junqi Zhao, Zhijin Fang, Shu Li, Shaohui Yang, Shichao He

Large language models (LLMs) are essential in natural language processing but often struggle with inference speed and computational efficiency, limiting real-time deployment. The key-value (KV) cache mechanism reduces computational overhead in transformer models, but challenges in maintaining contextual understanding remain. In this paper, we propose BUZZ, a novel KV caching algorithm that leverages structured contextual information to minimize cache memory usage while enhancing inference speed. BUZZ employs a beehive-structured sparse cache, incorporating a sliding window to capture recent information and dynamically segmenting historical tokens into chunks to prioritize important tokens in local neighborhoods. We evaluate BUZZ on four real-world datasets: CNN/Daily Mail, XSUM, Wikitext, and 10-QA. Our results demonstrate that BUZZ (1) reduces cache memory usage by $\textbf{2.5}\times$ in LLM inference while maintaining over 99% accuracy in long-text summarization, and (2) surpasses state-of-the-art performance in multi-document question answering by $\textbf{7.69%}$ under the same memory limit, where full cache methods encounter out-of-memory issues. Additionally, BUZZ achieves significant inference speedup with a $\log{n}$ time complexity. The code is available at this https URL

Submitted: Oct 30, 2024