Paper ID: 2410.23321

Beyond Current Boundaries: Integrating Deep Learning and AlphaFold for Enhanced Protein Structure Prediction from Low-Resolution Cryo-EM Maps

Xin (Chloe)Ma, Dong Si

Constructing atomic models from cryo-electron microscopy (cryo-EM) maps is a crucial yet intricate task in structural biology. While advancements in deep learning, such as convolutional neural networks (CNNs) and graph neural networks (GNNs), have spurred the development of sophisticated map-to-model tools like DeepTracer and ModelAngelo, their efficacy notably diminishes with low-resolution maps beyond 4 {\AA}. To address this shortfall, our research introduces DeepTracer-LowResEnhance, an innovative framework that synergizes a deep learning-enhanced map refinement technique with the power of AlphaFold. This methodology is designed to markedly improve the construction of models from low-resolution cryo-EM maps. DeepTracer-LowResEnhance was rigorously tested on a set of 37 protein cryo-EM maps, with resolutions ranging between 2.5 to 8.4 {\AA}, including 22 maps with resolutions lower than 4 {\AA}. The outcomes were compelling, demonstrating that 95.5\% of the low-resolution maps exhibited a significant uptick in the count of total predicted residues. This denotes a pronounced improvement in atomic model building for low-resolution maps. Additionally, a comparative analysis alongside Phenix's auto-sharpening functionality delineates DeepTracer-LowResEnhance's superior capability in rendering more detailed and precise atomic models, thereby pushing the boundaries of current computational structural biology methodologies.

Submitted: Oct 30, 2024