Paper ID: 2411.00188
Building Multi-Agent Copilot towards Autonomous Agricultural Data Management and Analysis
Yu Pan, Jianxin Sun, Hongfeng Yu, Joe Luck, Geng Bai, Nipuna Chamara, Yufeng Ge, Tala Awada
Current agricultural data management and analysis paradigms are to large extent traditional, in which data collecting, curating, integration, loading, storing, sharing and analyzing still involve too much human effort and know-how. The experts, researchers and the farm operators need to understand the data and the whole process of data management pipeline to make fully use of the data. The essential problem of the traditional paradigm is the lack of a layer of orchestrational intelligence which can understand, organize and coordinate the data processing utilities to maximize data management and analysis outcome. The emerging reasoning and tool mastering abilities of large language models (LLM) make it a potentially good fit to this position, which helps a shift from the traditional user-driven paradigm to AI-driven paradigm. In this paper, we propose and explore the idea of a LLM based copilot for autonomous agricultural data management and analysis. Based on our previously developed platform of Agricultural Data Management and Analytics (ADMA), we build a proof-of-concept multi-agent system called ADMA Copilot, which can understand user's intent, makes plans for data processing pipeline and accomplishes tasks automatically, in which three agents: a LLM based controller, an input formatter and an output formatter collaborate together. Different from existing LLM based solutions, by defining a meta-program graph, our work decouples control flow and data flow to enhance the predictability of the behaviour of the agents. Experiments demonstrates the intelligence, autonomy, efficacy, efficiency, extensibility, flexibility and privacy of our system. Comparison is also made between ours and existing systems to show the superiority and potential of our system.
Submitted: Oct 31, 2024