Paper ID: 2411.01144

LEARNER: Learning Granular Labels from Coarse Labels using Contrastive Learning

Gautam Gare, Jana Armouti, Nikhil Madaan, Rohan Panda, Tom Fox, Laura Hutchins, Amita Krishnan, Ricardo Rodriguez, Bennett DeBoisblanc, Deva Ramanan, John Galeotti

A crucial question in active patient care is determining if a treatment is having the desired effect, especially when changes are subtle over short periods. We propose using inter-patient data to train models that can learn to detect these fine-grained changes within a single patient. Specifically, can a model trained on multi-patient scans predict subtle changes in an individual patient's scans? Recent years have seen increasing use of deep learning (DL) in predicting diseases using biomedical imaging, such as predicting COVID-19 severity using lung ultrasound (LUS) data. While extensive literature exists on successful applications of DL systems when well-annotated large-scale datasets are available, it is quite difficult to collect a large corpus of personalized datasets for an individual. In this work, we investigate the ability of recent computer vision models to learn fine-grained differences while being trained on data showing larger differences. We evaluate on an in-house LUS dataset and a public ADNI brain MRI dataset. We find that models pre-trained on clips from multiple patients can better predict fine-grained differences in scans from a single patient by employing contrastive learning.

Submitted: Nov 2, 2024