Paper ID: 2411.01240
Optimizing Federated Learning by Entropy-Based Client Selection
Andreas Lutz, Gabriele Steidl, Karsten Müller, Wojciech Samek
Deep learning is an emerging field revolutionizing various industries, including natural language processing, computer vision, and many more. These domains typically require an extensive amount of data for optimal performance, potentially utilizing huge centralized data repositories. However, such centralization could raise privacy issues concerning the storage of sensitive data. To address this issue, federated learning was developed. It is a newly distributed learning technique that enables to collaboratively train a deep learning model on decentralized devices, referred to as clients, without compromising their data privacy. Traditional federated learning methods often suffer from severe performance degradation when the data distribution among clients differs significantly. This becomes especially problematic in the case of label distribution skew, where the distribution of labels varies across clients. To address this, a novel method called FedEntOpt is proposed. FedEntOpt is designed to mitigate performance issues caused by label distribution skew by maximizing the entropy of the global label distribution of the selected client subset in each federated learning round. This ensures that the aggregated model parameters from the clients were exhibited to data from all available labels, which improves the accuracy of the global model. Extensive experiments on several benchmark datasets show that the proposed method outperforms several state-of-the-art algorithms by up to 6% in classification accuracy, demonstrating robust and superior performance, particularly under low participation rates. In addition, it offers the flexibility to be combined with them, enhancing their performance by over 40%.
Submitted: Nov 2, 2024