Paper ID: 2411.01889

LiDAttack: Robust Black-box Attack on LiDAR-based Object Detection

Jinyin Chen, Danxin Liao, Sheng Xiang, Haibin Zheng

Since DNN is vulnerable to carefully crafted adversarial examples, adversarial attack on LiDAR sensors have been extensively studied. We introduce a robust black-box attack dubbed LiDAttack. It utilizes a genetic algorithm with a simulated annealing strategy to strictly limit the location and number of perturbation points, achieving a stealthy and effective attack. And it simulates scanning deviations, allowing it to adapt to dynamic changes in real world scenario variations. Extensive experiments are conducted on 3 datasets (i.e., KITTI, nuScenes, and self-constructed data) with 3 dominant object detection models (i.e., PointRCNN, PointPillar, and PV-RCNN++). The results reveal the efficiency of the LiDAttack when targeting a wide range of object detection models, with an attack success rate (ASR) up to 90%.

Submitted: Nov 4, 2024