Paper ID: 2411.01952

Evaluating the quality of published medical research with ChatGPT

Mike Thelwall, Xiaorui Jiang, Peter A. Bath

Evaluating the quality of published research is time-consuming but important for departmental evaluations, appointments, and promotions. Previous research has shown that ChatGPT can score articles for research quality, with the results correlating positively with an indicator of quality in all fields except Clinical Medicine. This article investigates this anomaly with the largest dataset yet and a more detailed analysis. The results showed that ChatGPT 4o-mini scores for articles submitted to the UK's Research Excellence Framework (REF) 2021 Unit of Assessment (UoA) 1 Clinical Medicine correlated positively (r=0.134, n=9872) with departmental mean REF scores, against a theoretical maximum correlation of r=0.226 (due to the departmental averaging involved). At the departmental level, mean ChatGPT scores correlated more strongly with departmental mean REF scores (r=0.395, n=31). For the 100 journals with the most articles in UoA 1, their mean ChatGPT score correlated strongly with their REF score (r=0.495) but negatively with their citation rate (r=-0.148). Journal and departmental anomalies in these results point to ChatGPT being ineffective at assessing the quality of research in prestigious medical journals or research directly affecting human health, or both. Nevertheless, the results give evidence of ChatGPT's ability to assess research quality overall for Clinical Medicine, so now there is evidence of its ability in all academic fields.

Submitted: Nov 4, 2024