Paper ID: 2411.02738

Novelty-focused R&D landscaping using transformer and local outlier factor

Jaewoong Choi

While numerous studies have explored the field of research and development (R&D) landscaping, the preponderance of these investigations has emphasized predictive analysis based on R&D outcomes, specifically patents, and academic literature. However, the value of research proposals and novelty analysis has seldom been addressed. This study proposes a systematic approach to constructing and navigating the R&D landscape that can be utilized to guide organizations to respond in a reproducible and timely manner to the challenges presented by increasing number of research proposals. At the heart of the proposed approach is the composite use of the transformer-based language model and the local outlier factor (LOF). The semantic meaning of the research proposals is captured with our further-trained transformers, thereby constructing a comprehensive R&D landscape. Subsequently, the novelty of the newly selected research proposals within the annual landscape is quantified on a numerical scale utilizing the LOF by assessing the dissimilarity of each proposal to others preceding and within the same year. A case study examining research proposals in the energy and resource sector in South Korea is presented. The systematic process and quantitative outcomes are expected to be useful decision-support tools, providing future insights regarding R&D planning and roadmapping.

Submitted: Nov 5, 2024