Paper ID: 2411.03941

Fine-tuning -- a Transfer Learning approach

Joseph Arul Raj, Linglong Qian, Zina Ibrahim

Secondary research use of Electronic Health Records (EHRs) is often hampered by the abundance of missing data in this valuable resource. Missingness in EHRs occurs naturally as a result of the data recording practices during routine clinical care, but handling it is crucial to the precision of medical analysis and the decision-making that follows. The literature contains a variety of imputation methodologies based on deep neural networks. Those aim to overcome the dynamic, heterogeneous and multivariate missingness patterns of EHRs, which cannot be handled by classical and statistical imputation methods. However, all existing deep imputation methods rely on end-to-end pipelines that incorporate both imputation and downstream analyses, e.g. classification. This coupling makes it difficult to assess the quality of imputation and takes away the flexibility of re-using the imputer for a different task. Furthermore, most end-to-end deep architectures tend to use complex networks to perform the downstream task, in addition to the already sophisticated deep imputation network. We, therefore ask if the high performance reported in the literature is due to the imputer or the classifier and further ask if an optimised state-of-the-art imputer is used, a simpler classifier can achieve comparable performance. This paper explores the development of a modular, deep learning-based imputation and classification pipeline, specifically built to leverage the capabilities of state-of-the-art imputation models for downstream classification tasks. Such a modular approach enables a) objective assessment of the quality of the imputer and classifier independently, and b) enables the exploration of the performance of simpler classification architectures using an optimised imputer.

Submitted: Nov 6, 2024