Paper ID: 2411.03965
Bayesian algorithmic perfumery: A Hierarchical Relevance Vector Machine for the Estimation of Personalized Fragrance Preferences based on Three Sensory Layers and Jungian Personality Archetypes
Rolando Gonzales Martinez
This study explores a Bayesian algorithmic approach to personalized fragrance recommendation by integrating hierarchical Relevance Vector Machines (RVM) and Jungian personality archetypes. The paper proposes a structured model that links individual scent preferences for top, middle, and base notes to personality traits derived from Jungian archetypes, such as the Hero, Caregiver, and Explorer, among others. The algorithm utilizes Bayesian updating to dynamically refine predictions as users interact with each fragrance note. This iterative process allows for the personalization of fragrance experiences based on prior data and personality assessments, leading to adaptive and interpretable recommendations. By combining psychological theory with Bayesian machine learning, this approach addresses the complexity of modeling individual preferences while capturing user-specific and population-level trends. The study highlights the potential of hierarchical Bayesian frameworks in creating customized olfactory experiences, informed by psychological and demographic factors, contributing to advancements in personalized product design and machine learning applications in sensory-based industries.
Submitted: Nov 6, 2024