Paper ID: 2411.04228

dsld: A Socially Relevant Tool for Teaching Statistics

Taha Abdullah, Arjun Ashok, Brandon Estrada, Norman Matloff, Aditya Mittal

The growing power of data science can play a crucial role in addressing social discrimination, necessitating nuanced understanding and effective mitigation strategies of potential biases. Data Science Looks At Discrimination (dsld) is an R and Python package designed to provide users with a comprehensive toolkit of statistical and graphical methods for assessing possible discrimination related to protected groups, such as race, gender, and age. Our software offers techniques for discrimination analysis by identifying and mitigating confounding variables, along with methods for reducing bias in predictive models. In educational settings, dsld offers instructors powerful tools to teach important statistical principles through motivating real world examples of discrimination analysis. The inclusion of an 80-page Quarto book further supports users, from statistics educators to legal professionals, in effectively applying these analytical tools to real world scenarios.

Submitted: Nov 6, 2024