Paper ID: 2411.04291
Unfair Alignment: Examining Safety Alignment Across Vision Encoder Layers in Vision-Language Models
Saketh Bachu, Erfan Shayegani, Trishna Chakraborty, Rohit Lal, Arindam Dutta, Chengyu Song, Yue Dong, Nael Abu-Ghazaleh, Amit K. Roy-Chowdhury
Vision-language models (VLMs) have improved significantly in multi-modal tasks, but their more complex architecture makes their safety alignment more challenging than the alignment of large language models (LLMs). In this paper, we reveal an unfair distribution of safety across the layers of VLM's vision encoder, with earlier and middle layers being disproportionately vulnerable to malicious inputs compared to the more robust final layers. This 'cross-layer' vulnerability stems from the model's inability to generalize its safety training from the default architectural settings used during training to unseen or out-of-distribution scenarios, leaving certain layers exposed. We conduct a comprehensive analysis by projecting activations from various intermediate layers and demonstrate that these layers are more likely to generate harmful outputs when exposed to malicious inputs. Our experiments with LLaVA-1.5 and Llama 3.2 show discrepancies in attack success rates and toxicity scores across layers, indicating that current safety alignment strategies focused on a single default layer are insufficient.
Submitted: Nov 6, 2024