Paper ID: 2411.05312

A Real-time Face Mask Detection and Social Distancing System for COVID-19 using Attention-InceptionV3 Model

Abdullah Al Asif, Farhana Chowdhury Tisha

One of the deadliest pandemics is now happening in the current world due to COVID-19. This contagious virus is spreading like wildfire around the whole world. To minimize the spreading of this virus, World Health Organization (WHO) has made protocols mandatory for wearing face masks and maintaining 6 feet physical distance. In this paper, we have developed a system that can detect the proper maintenance of that distance and people are properly using masks or not. We have used the customized attention-inceptionv3 model in this system for the identification of those two components. We have used two different datasets along with 10,800 images including both with and without Face Mask images. The training accuracy has been achieved 98% and validation accuracy 99.5%. The system can conduct a precision value of around 98.2% and the frame rate per second (FPS) was 25.0. So, with this system, we can identify high-risk areas with the highest possibility of the virus spreading zone. This may help authorities to take necessary steps to locate those risky areas and alert the local people to ensure proper precautions in no time.

Submitted: Nov 8, 2024