Paper ID: 2411.05638
Impact of Fake News on Social Media Towards Public Users of Different Age Groups
Kahlil bin Abdul Hakim, Sathishkumar Veerappampalayam Easwaramoorthy
This study examines how fake news affects social media users across a range of age groups and how machine learning (ML) and artificial intelligence (AI) can help reduce the spread of false information. The paper evaluates various machine learning models for their efficacy in identifying and categorizing fake news and examines current trends in the spread of fake news, including deepfake technology. The study assesses four models using a Kaggle dataset: Random Forest, Support Vector Machine (SVM), Neural Networks, and Logistic Regression. The results show that SVM and neural networks perform better than other models, with accuracies of 93.29% and 93.69%, respectively. The study also emphasises how people in the elder age group diminished capacity for critical analysis of news content makes them more susceptible to disinformation. Natural language processing (NLP) and deep learning approaches have the potential to improve the accuracy of false news detection. Biases in AI and ML models and difficulties in identifying information generated by AI continue to be major problems in spite of the developments. The study recommends that datasets be expanded to encompass a wider range of languages and that detection algorithms be continuously improved to keep up with the latest advancements in disinformation tactics. In order to combat fake news and promote an informed and resilient society, this study emphasizes the value of cooperative efforts between AI researchers, social media platforms, and governments.
Submitted: Nov 8, 2024