Paper ID: 2411.05799
NeoPhysIx: An Ultra Fast 3D Physical Simulator as Development Tool for AI Algorithms
Jörn Fischer, Thomas Ihme
Traditional AI algorithms, such as Genetic Programming and Reinforcement Learning, often require extensive computational resources to simulate real-world physical scenarios effectively. While advancements in multi-core processing have been made, the inherent limitations of parallelizing rigid body dynamics lead to significant communication overheads, hindering substantial performance gains for simple simulations. This paper introduces NeoPhysIx, a novel 3D physical simulator designed to overcome these challenges. By adopting innovative simulation paradigms and focusing on essential algorithmic elements, NeoPhysIx achieves unprecedented speedups exceeding 1000x compared to real-time. This acceleration is realized through strategic simplifications, including point cloud collision detection, joint angle determination, and friction force estimation. The efficacy of NeoPhysIx is demonstrated through its application in training a legged robot with 18 degrees of freedom and six sensors, controlled by an evolved genetic program. Remarkably, simulating half a year of robot lifetime within a mere 9 hours on a single core of a standard mid-range CPU highlights the significant efficiency gains offered by NeoPhysIx. This breakthrough paves the way for accelerated AI development and training in physically-grounded domains.
Submitted: Oct 26, 2024