Paper ID: 2411.05854

Harmful YouTube Video Detection: A Taxonomy of Online Harm and MLLMs as Alternative Annotators

Claire Wonjeong Jo, Miki Wesołowska, Magdalena Wojcieszak

Short video platforms, such as YouTube, Instagram, or TikTok, are used by billions of users globally. These platforms expose users to harmful content, ranging from clickbait or physical harms to misinformation or online hate. Yet, detecting harmful videos remains challenging due to an inconsistent understanding of what constitutes harm and limited resources and mental tolls involved in human annotation. As such, this study advances measures and methods to detect harm in video content. First, we develop a comprehensive taxonomy for online harm on video platforms, categorizing it into six categories: Information, Hate and harassment, Addictive, Clickbait, Sexual, and Physical harms. Next, we establish multimodal large language models as reliable annotators of harmful videos. We analyze 19,422 YouTube videos using 14 image frames, 1 thumbnail, and text metadata, comparing the accuracy of crowdworkers (Mturk) and GPT-4-Turbo with domain expert annotations serving as the gold standard. Our results demonstrate that GPT-4-Turbo outperforms crowdworkers in both binary classification (harmful vs. harmless) and multi-label harm categorization tasks. Methodologically, this study extends the application of LLMs to multi-label and multi-modal contexts beyond text annotation and binary classification. Practically, our study contributes to online harm mitigation by guiding the definitions and identification of harmful content on video platforms.

Submitted: Nov 6, 2024