Paper ID: 2411.06371
LLM Vocabulary Compression for Low-Compute Environments
Sreeram Vennam, Anish Joishy, Ponnurangam Kumaraguru
We present a method to compress the final linear layer of language models, reducing memory usage by up to 3.4x without significant performance loss. By grouping tokens based on Byte Pair Encoding (BPE) merges, we prevent materialization of the memory-intensive logits tensor. Evaluations on the TinyStories dataset show that our method performs on par with GPT-Neo and GPT2 while significantly improving throughput by up to 3x, making it suitable for low-compute environments.
Submitted: Nov 10, 2024