Paper ID: 2411.06691

Autonomous Droplet Microfluidic Design Framework with Large Language Models

Dinh-Nguyen Nguyen, Raymond Kai-Yu Tong, Ngoc-Duy Dinh

Droplet-based microfluidic devices have substantial promise as cost-effective alternatives to current assessment tools in biological research. Moreover, machine learning models that leverage tabular data, including input design parameters and their corresponding efficiency outputs, are increasingly utilised to automate the design process of these devices and to predict their performance. However, these models fail to fully leverage the data presented in the tables, neglecting crucial contextual information, including column headings and their associated descriptions. This study presents MicroFluidic-LLMs, a framework designed for processing and feature extraction, which effectively captures contextual information from tabular data formats. MicroFluidic-LLMs overcomes processing challenges by transforming the content into a linguistic format and leveraging pre-trained large language models (LLMs) for analysis. We evaluate our MicroFluidic-LLMs framework on 11 prediction tasks, covering aspects such as geometry, flow conditions, regimes, and performance, utilising a publicly available dataset on flow-focusing droplet microfluidics. We demonstrate that our MicroFluidic-LLMs framework can empower deep neural network models to be highly effective and straightforward while minimising the need for extensive data preprocessing. Moreover, the exceptional performance of deep neural network models, particularly when combined with advanced natural language processing models such as DistilBERT and GPT-2, reduces the mean absolute error in the droplet diameter and generation rate by nearly 5- and 7-fold, respectively, and enhances the regime classification accuracy by over 4%, compared with the performance reported in a previous study. This study lays the foundation for the huge potential applications of LLMs and machine learning in a wider spectrum of microfluidic applications.

Submitted: Nov 11, 2024