Paper ID: 2411.08286

Hashing for Protein Structure Similarity Search

Jin Han, Wu-Jun Li

Protein structure similarity search (PSSS), which tries to search proteins with similar structures, plays a crucial role across diverse domains from drug design to protein function prediction and molecular evolution. Traditional alignment-based PSSS methods, which directly calculate alignment on the protein structures, are highly time-consuming with high memory cost. Recently, alignment-free methods, which represent protein structures as fixed-length real-valued vectors, are proposed for PSSS. Although these methods have lower time and memory cost than alignment-based methods, their time and memory cost is still too high for large-scale PSSS, and their accuracy is unsatisfactory. In this paper, we propose a novel method, called $\underline{\text{p}}$r$\underline{\text{o}}$tein $\underline{\text{s}}$tructure $\underline{\text{h}}$ashing (POSH), for PSSS. POSH learns a binary vector representation for each protein structure, which can dramatically reduce the time and memory cost for PSSS compared with real-valued vector representation based methods. Furthermore, in POSH we also propose expressive hand-crafted features and a structure encoder to well model both node and edge interactions in proteins. Experimental results on real datasets show that POSH can outperform other methods to achieve state-of-the-art accuracy. Furthermore, POSH achieves a memory saving of more than six times and speed improvement of more than four times, compared with other methods.

Submitted: Nov 13, 2024