Paper ID: 2411.08699
FedSub: Introducing class-aware Subnetworks Fusion to Enhance Personalized Federated Learning in Ubiquitous Systems
Mattia Giovanni Campana, Franca Delmastro
Personalized Federated Learning is essential in AI-driven ubiquitous systems, supporting the distributed development of models able to adapt to diverse and evolving user behaviors while safeguarding privacy. Despite addressing heterogeneous user data distributions in collaborative model training, existing methods often face limitations balancing personalization and generalization, oversimplifying user similarities, or relying heavily on global models. In this paper, we propose FedSub, a novel federated approach designed to enhance personalization through the use of class-aware prototypes and model subnetworks. Prototypes serve as compact representations of user data, clustered on the server to identify similarities based on specific label patterns. Concurrently, subnetworks -- model components necessary to process each class -- are extracted locally and fused by the server according to these clusters, producing highly tailored model updates for each user. This fine-grained, class-specific aggregation of clients' models allows FedSub to capture the unique characteristics of individual user data patterns. The effectiveness of FedSub is validated in three real-world scenarios characterized by high data heterogeneity, derived from human activity recognition and mobile health applications. Experimental evaluations demonstrate FedSub's performance improvements with respect to the state-of-the-art and significant advancements in personalization for ubiquitous systems based on personal mobile and wearable devices.
Submitted: Nov 13, 2024