Paper ID: 2411.09689

LLM Hallucination Reasoning with Zero-shot Knowledge Test

Seongmin Lee, Hsiang Hsu, Chun-Fu Chen

LLM hallucination, where LLMs occasionally generate unfaithful text, poses significant challenges for their practical applications. Most existing detection methods rely on external knowledge, LLM fine-tuning, or hallucination-labeled datasets, and they do not distinguish between different types of hallucinations, which are crucial for improving detection performance. We introduce a new task, Hallucination Reasoning, which classifies LLM-generated text into one of three categories: aligned, misaligned, and fabricated. Our novel zero-shot method assesses whether LLM has enough knowledge about a given prompt and text. Our experiments conducted on new datasets demonstrate the effectiveness of our method in hallucination reasoning and underscore its importance for enhancing detection performance.

Submitted: Nov 14, 2024