Paper ID: 2411.09749
Adversarial Attacks Using Differentiable Rendering: A Survey
Matthew Hull, Chao Zhang, Zsolt Kira, Duen Horng Chau
Differentiable rendering methods have emerged as a promising means for generating photo-realistic and physically plausible adversarial attacks by manipulating 3D objects and scenes that can deceive deep neural networks (DNNs). Recently, differentiable rendering capabilities have evolved significantly into a diverse landscape of libraries, such as Mitsuba, PyTorch3D, and methods like Neural Radiance Fields and 3D Gaussian Splatting for solving inverse rendering problems that share conceptually similar properties commonly used to attack DNNs, such as back-propagation and optimization. However, the adversarial machine learning research community has not yet fully explored or understood such capabilities for generating attacks. Some key reasons are that researchers often have different attack goals, such as misclassification or misdetection, and use different tasks to accomplish these goals by manipulating different representation in a scene, such as the mesh or texture of an object. This survey adopts a task-oriented unifying framework that systematically summarizes common tasks, such as manipulating textures, altering illumination, and modifying 3D meshes to exploit vulnerabilities in DNNs. Our framework enables easy comparison of existing works, reveals research gaps and spotlights exciting future research directions in this rapidly evolving field. Through focusing on how these tasks enable attacks on various DNNs such as image classification, facial recognition, object detection, optical flow and depth estimation, our survey helps researchers and practitioners better understand the vulnerabilities of computer vision systems against photorealistic adversarial attacks that could threaten real-world applications.
Submitted: Nov 14, 2024