Paper ID: 2411.09816

Learning Parameter Sharing with Tensor Decompositions and Sparsity

Cem Üyük, Mike Lasby, Mohamed Yassin, Utku Evci, Yani Ioannou

Large neural networks achieve remarkable performance, but their size hinders deployment on resource-constrained devices. While various compression techniques exist, parameter sharing remains relatively unexplored. This paper introduces Fine-grained Parameter Sharing (FiPS), a novel algorithm that leverages the relationship between parameter sharing, tensor decomposition, and sparsity to efficiently compress large vision transformer models. FiPS employs a shared base and sparse factors to represent shared neurons across multi-layer perception (MLP) modules. Shared parameterization is initialized via Singular Value Decomposition (SVD) and optimized by minimizing block-wise reconstruction error. Experiments demonstrate that FiPS compresses DeiT-B and Swin-L MLPs to 25-40% of their original parameter count while maintaining accuracy within 1 percentage point of the original models.

Submitted: Nov 14, 2024