Paper ID: 2411.10298

Unveiling Topological Structures in Text: A Comprehensive Survey of Topological Data Analysis Applications in NLP

Adaku Uchendu, Thai Le

The surge of data available on the internet has led to the adoption of various computational methods to analyze and extract valuable insights from this wealth of information. Among these, the field of Machine Learning (ML) has thrived by leveraging data to extract meaningful insights. However, ML techniques face notable challenges when dealing with real-world data, often due to issues of imbalance, noise, insufficient labeling, and high dimensionality. To address these limitations, some researchers advocate for the adoption of Topological Data Analysis (TDA), a statistical approach that discerningly captures the intrinsic shape of data despite noise. Despite its potential, TDA has not gained as much traction within the Natural Language Processing (NLP) domain compared to structurally distinct areas like computer vision. Nevertheless, a dedicated community of researchers has been exploring the application of TDA in NLP, yielding 85 papers we comprehensively survey in this paper. Our findings categorize these efforts into theoretical and nontheoretical approaches. Theoretical approaches aim to explain linguistic phenomena from a topological viewpoint, while non-theoretical approaches merge TDA with ML features, utilizing diverse numerical representation techniques. We conclude by exploring the challenges and unresolved questions that persist in this niche field. Resources and a list of papers on this topic can be found at: this https URL

Submitted: Nov 15, 2024