Paper ID: 2411.10693

Multi-perspective Contrastive Logit Distillation

Qi Wang, Jinjia Zhou

We propose a novel and efficient logit distillation method, Multi-perspective Contrastive Logit Distillation (MCLD), which leverages contrastive learning to distill logits from multiple perspectives in knowledge distillation. Recent research on logit distillation has primarily focused on maximizing the information learned from the teacher model's logits to enhance the performance of the student model. To this end, we propose MCLD, which consists of three key components: Instance-wise CLD, Sample-wise CLD, and Category-wise CLD. These components are designed to facilitate the transfer of more information from the teacher's logits to the student model. Comprehensive evaluations on image classification tasks using CIFAR-100 and ImageNet, alongside representation transferability assessments on STL-10 and Tiny-ImageNet, highlight the significant advantages of our method. The knowledge distillation with our MCLD, surpasses existing state-of-the-art methods.

Submitted: Nov 16, 2024