Paper ID: 2411.11497
Physics Encoded Blocks in Residual Neural Network Architectures for Digital Twin Models
Muhammad Saad Zia, Ashiq Anjum, Lu Liu, Anthony Conway, Anasol Pena Rios
Physics Informed Machine Learning has emerged as a popular approach in modelling and simulation for digital twins to generate accurate models of processes and behaviours of real-world systems. However, despite their success in generating accurate and reliable models, the existing methods either use simple regularizations in loss functions to offer limited physics integration or are too specific in architectural definitions to be generalized to a wide variety of physical systems. This paper presents a generic approach based on a novel physics-encoded residual neural network architecture to combine data-driven and physics-based analytical models to address these limitations. Our method combines physics blocks as mathematical operators from physics-based models with learning blocks comprising feed-forward layers. Intermediate residual blocks are incorporated for stable gradient flow as they train on physical system observation data. This way, the model learns to comply with the geometric and kinematic aspects of the physical system. Compared to conventional neural network-based methods, our method improves generalizability with substantially low data requirements and model complexity in terms of parameters, especially in scenarios where prior physics knowledge is either elementary or incomplete. We investigate our approach in two application domains. The first is a basic robotic motion model using Euler Lagrangian equations of motion as physics prior. The second application is a complex scenario of a steering model for a self-driving vehicle in a simulation. In both applications, our method outperforms both conventional neural network based approaches as-well as state-of-the-art Physics Informed Machine Learning methods.
Submitted: Nov 18, 2024