Paper ID: 2411.11926

KAN-Mamba FusionNet: Redefining Medical Image Segmentation with Non-Linear Modeling

Akansh Agrawal, Akshan Agrawal, Shashwat Gupta, Priyanka Bagade

Medical image segmentation is crucial in robotic surgeries, disease diagnosis, and treatment plans. This research presents an innovative methodology that combines Kolmogorov-Arnold Networks (KAN) with an adapted Mamba layer for medical image segmentation. The proposed KAN-Mamba FusionNet framework improves image segmentation by integrating attention-driven mechanisms with convolutional parallel training and autoregressive deployment, while preserving interpretability, in contrast to the state-of-the-art techniques that depend exclusively on Mamba for ailment localization and accurate diagnosis. We evaluated our proposed KAN-Mamba FusionNet model on three distinct medical image segmentation datasets, BUSI, Kvasir-Seg and GlaS. The results indicated that the KAN-Mamba FusionNet consistently yields better IoU and F1 scores in comparison to the state-of-the-art methods. Further, we offer insights into the model's behavior via ablation studies, examining the effects of various components and assessing their contributions to the overall performance of the proposed model. The findings illustrate the strength and effectiveness of this methodology for dependable medical image segmentation, providing a unique approach to address intricate visual data issues in healthcare.

Submitted: Nov 18, 2024