Paper ID: 2411.12525
Rethinking Top Probability from Multi-view for Distracted Driver Behaviour Localization
Quang Vinh Nguyen, Vo Hoang Thanh Son, Chau Truong Vinh Hoang, Duc Duy Nguyen, Nhat Huy Nguyen Minh, Soo-Hyung Kim
Naturalistic driving action localization task aims to recognize and comprehend human behaviors and actions from video data captured during real-world driving scenarios. Previous studies have shown great action localization performance by applying a recognition model followed by probability-based post-processing. Nevertheless, the probabilities provided by the recognition model frequently contain confused information causing challenge for post-processing. In this work, we adopt an action recognition model based on self-supervise learning to detect distracted activities and give potential action probabilities. Subsequently, a constraint ensemble strategy takes advantages of multi-camera views to provide robust predictions. Finally, we introduce a conditional post-processing operation to locate distracted behaviours and action temporal boundaries precisely. Experimenting on test set A2, our method obtains the sixth position on the public leaderboard of track 3 of the 2024 AI City Challenge.
Submitted: Nov 19, 2024